

School District of Marshfield Course

Syllabus

Course Name: Advanced Computer Programming Honors
Length of Course: Semester
Credit: 1/2 Credit

Program Goal:

Empower learners to be college and career ready through standards-based experiences in the

classroom and career-based learning experiences with business and industry partners. Design

and implement educational experiences for creating a skilled, knowledgeable, and productive

workforce. Learners will engage in competencies that enable them to stay up-to-date with

evolving skills as they pursue careers directly out of high school, as technical school degree

earners, or as university graduates. Our goal is to develop critical thinkers and collaborative

problem solvers, providing connections to the issues and challenges facing our local, regional,

and global economies.

Course Description:

Looking for a competitive advantage in your chosen career path? Using hands-on learning

experiences, you’ll explore the fundamentals of computer programming using a variety of

programming languages. A rewarding, sometimes challenging, collaborative and creative

learning experience, this course is designed to prepare students for Game Programming and/or

AP Computer Science A. Explore one of the most popular STEM/STEAM fields in terms of

jobs outlook and salary in our world today.

Standards: Wisconsin Standards for Computer Science (CS)
Algorithms and Programming
AP1: Students will recognize and define computational problems using algorithms and programming.
Develop algorithms.
AP1.a

1.a.8.h: Analyze a problem, and then design and
implement an algorithmic solution using sequence,
selection and iteration.
1.a.11.h: (+) Decompose a large-scale computational
problem by identifying generalizable patterns and
applying them in a solution.

AP2: Students will create computational artifacts using algorithms and programming.
Develop and implement an artifact.
AP2.a

2.a.12.h: Design, develop, and implement a computing
artifact that responds to an event (e.g., robot that
responds to a sensor, mobile app that responds to a text
message, sprite that responds to a broadcast).
2.a.16.h: (+) Demonstrate code reuse by creating
programming solutions using libraries and Application
Program Interfaces (APIs). (e.g., graphics libraries, maps,
API).

AP3: Students will communicate about computing ideas.
Communicate about technical and
social issues.
AP3.b

3.b.8.h: Evaluate and analyze how algorithms have
impacted our society and discuss the benefits and harmful
impacts of a variety of technological innovations.

Document code.
AP3.c

3.c.5.h: (+) Use application programming interface
(APIs) documentation resources.

AP4: Students will develop and use abstractions.
Create and use abstractions
(representations) to solve complex
computational problems.
AP4.a

4.a.4.h: Demonstrate the value of abstraction for managing
problem complexity (e.g., using a list instead of discrete
variables).
4.a.6.h : Deconstruct a complex problem into simpler
parts using predefined constructs (e.g., functions and
parameters and/or classes).
4.a.13.h: (+) Identify abstractions used in a solution
(program or software artifact) and reuse those abstractions
to solve a different problem.

AP5: Students will collaborate with diverse teams.
Work together to solve computational
problems using a variety of resources.
AP5.a

5.a.7.h: Demonstrate how diverse collaborating impacts
the design and development of software products (e.g.,
discussing real-world examples of products which have
been improved through having a diverse design team or
reflecting on their own team's development experience).

Foster an inclusive computing culture.
AP5.b

5.b.3.h: Create design teams taking into account the
strengths and perspectives of potential team members.

AP6: Students will test and refine computational solutions.
Test and debug computational
solutions.
AP6.a

6.a.4.h: Use a systematic approach and debugging tools to
independently debug a program (e.g., setting breakpoints,
inspecting variables with a debugger).

Computing Systems
CS3: Students will develop and use abstractions in computing systems.
Generalize in computer systems.
CS3.a

3.a.3.h: (+) Describe the steps necessary for a computer to
execute high-level source code (e.g., compilation to
machine language, interpretation, fetch-decode-execute
cycle).

CS4: Students will create and modify computing systems.
Modify and create computational
artifacts.
CS4.a

4.a.2.h: Create, extend, or modify existing programs to
add new features and behaviors using different forms of
inputs and outputs (e.g., inputs such as sensors, mouse
clicks, data sets; outputs such as text, graphics, sounds).

Data and Analysis
DA1: Students will create computational artifacts using data and analysis.
Represent and manipulate data.
DA1.a

1.a.4.h: Convert between binary, decimal, and
hexadecimal representations of data (e.g., convert
hexadecimal color codes to decimal percentages,
ASCII/Unicode representation).
4.a.7.h: (+) Evaluate the ability of models and simulations
to formulate, refine, and test hypotheses.

Identify patterns.
DA4.b

4.b.1.h:(+) Use data analysis to identify significant
patterns in complex systems (e.g., take existing data sets
and make sense of them).

Impacts of Computing
IC1: Students will understand the impact and effect computing technology has on our everyday lives.
Understand the impact technology has
on our everyday lives, and the effects of
computing on the economy and culture.
IC1.a

1.a.6.h: Debate the social and economic implications
associated with ethical and unethical computing practices
(e.g., intellectual property rights, hacktivism, software
piracy, new computers shipped with malware).

Understand the effects of computing on
communication and relationships.
IC2.b

1.b.5.h: Evaluate the negative impacts of electronic
communication on personal relationships and evaluate
differences between face-to-face and electronic
communication.

IC2: Students will experience learning within a collaborative, inclusive computing culture
and explain the steps needed to ensure that all people have access to computing.
Collaborate ethically in the creation of
digital artifacts.
IC2.c

2.c.5.h: Ethically and safely select, observe, and
contribute to global collaboration in the development of a
computational artifact (e.g., contribute the resolution of a
bug in an open-source project platform, or contribute an
online article).

Networking and the Internet
NI1: Students will understand the importance of security when using technology.
Use secure practices for personal
computing.
NI1.a

1.a.6.h: Provide examples of personal data that should
be kept secure and the methods by which individuals keep
their private data secure.

Key Vocabulary:
access specifier do-while-loop infinite loops postconditions
accessor method statement inheritance preconditions
aggregation }while(condition) inner class primitive types
ArrayList element instance reference
arrays encapsulation Interface auto-boxing
Explicit is-a return type base class
for loops method scope collaborators
for-each-loop mutator method setter compiler
Statement nested loops side effects compound statement
} object simple statement condition
getter object reference String construction
has-a operator typecasting constructor
hierarchies overloading Variable dependency
Identifier overriding while loop derived class
immutable parameter wrapper classes do loop
Implicit polymorphism

Topics/Content Outline- Units and Themes:
Quarter 1:

● Introduction to Hardware and Software (2 weeks)
○ Elements of a computer system
○ Computer memory (binary, hex, ASCII/Unicode.)

● Software Development Environment (3 weeks)
○ Compilers and Interpreters (SDK/JRE/Command Line)
○ Languages (Visual Basic/Python/Java/NQC)
○ Integrated Development Environments(Eclipse, NetBeans, BlueJ)
○ Java SDK Tools (javac, java, appletviewer, javadoc)

● Object Oriented Programming (2 weeks)
○ Classes and Objects (library classes, packages)
○ Class Design (Fields, Constructors, Methods)
○ OOP Architecture (inheritance, polymorphism, encapsulation)

● Java Syntax and Style (2 weeks)
○ Style (Statements, braces, blocks, indentation)
○ Syntax (Reserved words and programmer-defined names)
○ Errors (Syntax errors, run-time errors, logic errors)

Quarter 2:
● Data types, Variables, and Arithmetic (4 weeks)

○ Primitive Data Types (int, double, char)
○ Data Types in Arithmetic Expressions
○ Declarations of Variables (Fields, Local Variables)
○ Initialization and Scope
○ Arithmetic Expressions (Data Types in Expressions)

● The If-Else Statement (3 weeks)
○ If-Else Statements
○ Boolean Expressions
○ Relational and Logical Operators
○ Nesting (Nested if-else and if-else-if)

● Classes, Constructors, Methods, and Fields (2 weeks)
○ Classes (Encapsulation, Information Hiding)
○ Constructors (Instantiation, the New Operator)
○ Methods (Defined, Overloading, Calling, Accessing)
○ Public and Private Fields and Methods

Primary Resource(s):

Microsoft Visual Basic 2017 Windows Web Windows Store & Database Apps, 1st Edition
Cengage Learning
ISBN: 978-1-33-710211-7
©2018

